
THE ROUNDING ISSUE

Synopsis

The rounding error occurs when a requisition is created with a line item's cost is split across multiple ACCS that do not split evenly within 2 digits of precision in either the quantity or the cost. CRequest calculates precision at 2 digits after the decimal point while CFS calculates precision at 3 digits after the decimal point. Since CRequest and CFS are using different precision a split will pass CRequest validation but then be rejected when it is in CFS for COMMIT approval.

The short term solution is to "Over Commit" and "Under Obligate". This means the requisitioner needs to increase the dollar values to the point that they result in an even split. Then they need to communicate to their acquisition office the amounts they actually wish to OBLIGATE. Currently this is the ONLY way to get these transactions through. On complex rounding issues coming up with the correct set up number to pass the interface is challenging and can be time consuming. Jacob has come up with a spreadsheet

that he can quickly figure the combination that will work. Jacob will be shared and explained the method to the other team members. He would be happy to share it with others as well.
The preferred solution is to modify the CFS/ORSI to only produce a warning but allows transactions to go through as opposed to the error rejecting the transaction.

Detailed Explanation
On occasion a requisitioner creates a line item which requires a split of costs to multiple ACCS codes. Typically, the costs work out evenly and the requisition passes without issue, however on occasion the split of costs to multiple ACCS codes creates a rejection when the costs cannot be split evenly within 2 digits of precision in either the quantity or the costs. (AR 21034 was created to address this issue.)

Line Item #1
Desired $ Split
Quantity

ACCS #1
 140,000
 0.053846153846154000

ACCS #2
 1,300,000
 0.500000000000000000

ACCS #3 30,000

 0.011538461538461500

ACCS #4
 30,000
 0.011538461538461500

ACCS #5
 1,100,000
 0.423076923076923000

 Unit Price 2,600,000
 1.000000000000000000

Figure 1

The "Desired $ Split" represents how the user would like to disperse the cost of line item 0001 between each of the five ACCS codes. However, as indicated by "Quantity" column these would have to be the quantity amounts, with a total quantity of 1, to enable this dispursement to work.

C.Request allows only 2 digits of precision for the quantity (CFS allows 3) which would "chop off" all the remaining digits and, hence, would change the value of the quantity. In Figure 1, the quantity for ACCS #1 would be rounded to 0.05.

Below shows how the line item would look if the user entered the dollar amounts for rounded quantities from Figure 1.

Line Item #1
 Desired $ Split(Sent to CFS)
Qty
Percentage

Actual $ (Calculated by CFS)

ACCS #1
140,000

0.05
5.38%

130,000.00

ACCS #2
1,300,000

0.50
50.00% 1,300,000.00

ACCS #3
30,000

0.01
1.15%

 26,000.00

ACCS #4
30,000

0.01
1.15%

 26,000.00

ACCS #5
1,100,000

0.42
42.31%
 1,092,000.00

$2,600,000

0.99
99.99% $2,574,000.00

Figure 2

CFS multiplies the quantity by the unit price to ensure that each MDL dollar amount/allocation is exactly correct. When this rounding difference occurs the numbers cannot come out correctly. In Figure 2, the quantity for ACCS #1 is rounded to 0.05 removing all significant digits after the "5".

Result

When entering a line item that is to be split across multiple ACCS codes the costs and quantities must be exactly accurate to two decimals of precision. This is the only method to get a split line item to pass edits at CFS.

C.Request has a configuration option to Allow Automatic calculations at the ACCS level. When this is set to Allow Automatic recalculating C.Request uses the same edits as CFS. When turned on, it forces the user to adjust/fudge the distributions so that if it will pass the C.Request edit then it will pass the CFS edit. With the configuration option turned off then C.Request allows the user to enter any values they wish and to submit the Commitment. However, CFS will reject the commitment due the incorrect values being passed.

Solution

The preferred solution is to modify the CFS/ORSI staging table edit to match the FM030 table edit. The staging table edit currently generates an error message which rejects the transaction, whereas the FM030 edit generates only a warning message which allows the transaction to continue.

Two other potential solutions below were also identified, but were deemed less viable/desirable than the solution above.

Expand the C.Request Quantity field from 2 to 3 decimal places. It will then match the specificity of the Quantity field in CFS. This would require a CACI help desk ticket & a subsequent change to C.Request.

Revise the CFS calculation so that it only verifies the total dollar amounts for all ACCS codes against the Line Item amount.

